Laboratory of Building- and Environmental Aerodynamics

Director: Prof. Dr.-Ing. habil. Dr. h.c. Bodo Ruck

Institute for Hydromechanics, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76128 Karlsruhe, Germany
Tel.:  +49 (0)721 608 43897
e-mail:  ruck@kit.edu

Internet:  website


Data base VIPAS
The data base VIPAS (Vehicle Induced Pressure And Suction) summarizes the results of extensive fullscale measurements, which have been performed within the DFG research project Ru-345/32-1. 

Datenbank VIPAS
Die Datenbank VIPAS (Vehicle Induced Pressure And Suction) fasst die Ergebnisse zusammen, die im Rahmen des DFG Forschungsvorhabens Ru-345/32-1 in umfassenden Feldmessungen gewonnen werden konnten.

GERMANYC.JPG (2763 Byte)  Die Abbildungen, Skizzen, Zeichnungen und Fotos auf dieser und nachfolgend aufrufbaren Internetseiten unterliegen dem Urheberrecht.
BRITAIN.JPG (9340 Byte)  The pictures, sketches, drawings and photos on this and subsequent internet pages are copyright protected.

funded by

Logo: Deutsche Forschungsgemeinschaft (DFG) - zur Startseite

Project no. Ru 345/32-1
Research period: 2011 - 2014

Principal Researchers
Prof. Dr.-Ing. Bodo Ruck & Dr. Petr Lichtneger
Laboratory of Building- and Environmental Aerodynamics
Institute for Hydromechanics
Karlsruhe Institute of Technology (KIT)
Kaiserstr. 12
76131 Karlsruhe, Germany
e-mail: ruck@kit.edu

Project title

Unsteady pressure and suction forces on flat roadside elements induced by passing vehicles

Abstract

Every day and innumerably, road vehicles of different types pass flat roadside-placed elements like stable or temporary traffic signs, noise barriers, charge devices, etc. The elements are exposed to a vehicle-specific flow and pressure field, i.e. to transient loads. In order to quantify the involved phenomena, full-scale experiments were performed for six different vehicle types and three sizes of square plates, which were aligned in three different configurations with respect to the vehicle's track. For the measurement of loads effecting the plate, the pressure multi-tapping technique was implemented with high temporal and spatial resolution. The experiments delivered a broad data-base for the proper quantification of vehicle induced loads on flat elements as a function of vehicle type, vehicle velocity and passing distance to the plate, element size as well as spatial plate alignment with respect to the vehicle.

Technical staff
Timo Bauer, Dieter Groß, Armin Reinsch, Harald Deutsch
LDA measurements
Dr.-Ing. Boris Pavlovski



Subject of research within project DFG Ru 345/32-1
 
Contents VIPAS database

 
Chapter Description
I Flow field around a moving vehicle with no interacting roadside element (fundamentals)
II How to imagine the flow field around a box-shaped vehicle ?
III Fullscale investigation: Flow field around a moving vehicle with interacting roadside element
IV Parameters of influence
V Investigated configurations
VI Investigated vehicle types
VII Fullscale measuring campaign - different vehicle types
VIII Definitions, dimensions, conventions
IX Data capturing and processing
X Distance model
XI Characteristic load curve
XII Summary of data processing
XIII VIPAS data - part 1: flat plate
XIV How to use database VIPAS - part 1: flat plate
XV Copyright & Disclaimer
XVI Publications

Website of Laboratory of Building- and Environmental Aerodynamics, KIT


Flow field around a moving vehicle with no interacting roadside element (fundamentals)


            

back


How to imagine the flow field around a box-shaped vehicle ?

(wind tunnel measurements with laser Doppler anemometry)

Most trucks in Europe have box shape


                                                                                                                                                © B. Ruck


back


Fullscale investigation: Flow field around a moving vehicle with interacting roadside element


back


Parameters of influence


back


back

Investigated vehicle types


Table 1: Data of vehicle types
back
 


Fullscale measuring campaign - different vehicle types



back

Definitions, dimensions, conventions

Layout of experiment showing three configurations A, B and C – front and side view;
investigated flat element sizes 50 cm x 50 cm, 100 cm x 100 cm or 150 cm x 150 cm, i.e. a1=50 cm, a2=100 cm, a3=150 cm


back


Data capturing and processing

The test plates were equipped with many pressure tappings on both sides in order to measure differential pressure distributions with high spatial and temporal resolution during the vehicle's passing.  Integrating the instantaneous differential pressure distribution (pressure difference between front and back side of the flat element) leads to a transient force acting on the element, which is a function of vehicle type, passing distance Y, vehicle velocity U and time t. These time-dependent force curves are given examplarily in the following figure for all three configurations (A, B, C):

Fig. 1: Characteristic force curves measured with truck and different configurations A, B, C; medium-sized plate; ensemble averaged curves, re-calculated for a passing distance of 0.7 m and an approach velocity of 80 km/h using the appropriate distance model as described below.
Please note:
A 'test position' is defined as a combination of one particular configuration (A, B, or C), one vehicle type, one vertical level Z of the test plate.

 

 

Ui and Yi vary during the fullscale experiments

 

 

Since wind loads depend on the square of velocity, the vehicle-induced force F(t) was normalized by a force consisting of the product of vehicle velocity-based dynamic pressure, air density and the vehicle frontal area (Av = B x H). This led to the dimensionless transient force coefficient CF(t).    

                                                          

The curves for the dimensionless transient force coefficient CF (t) still depend on U and Y, however, all curves of the same passing distance show the same amplitude but have different time durations due to varying vehicle velocity. If we introduce on the abscissa a dimensionless time tn formed by multiplying the real time with the vehicle velocity divided by the vehicle length L, then, all measured curves of the dimensionless transient force coefficient CF(tn) will have the same length. Thus, for a fixed passing distance Y, the curves of CF(tn) show the same amplitude, i.e. CF(tn) depends only on Y

                                                                

Since the dimensionless transient force coefficient CF(tn) depends only on Y, it should be possible to divide it by a function k(Y), which is called 'distance model', forcing all curves collapsing to more or less one single curve, the 'characteristic load curve' for one test position, see below..   

back     


Distance model

The distance model describes the relation between force impact and passing distance Y. In order to obtain a distance model, a great number of vehicle passings was realized with a specified test position measuring the differential force coefficient (difference of the force coefficient of the first maximum P1 and first minimum P3, see Fig. 1) in each curve and display the values in a graph. It was found that the differential force coefficient CF,diff13 could be approximated with a 3rd power function fitted within the tested distance range. Thus, for each test position, a distance model k(Y) was estimated applying model coefficients a [m3] and b [m] appropriately.

                                                                                                                                                                                                        

The decay with power of -3 corresponds to a simplified theoretical model presented in Sanz-Andrés et al. 1992 (Sanz-Andrés, A., Laverón, A., Quinn, A., Vehicle induced loads on pedestrian barriers’, Journal of Wind Eng. & Ind. Aerodyn., 2003, 92, pp. 413-442). In the following Figure 2, values of differential force coefficients CF,diff13 based on force measurements with a truck are displayed. As can be seen, three distance models k(Y) for the three different configurations (A, B, C) can be derived by fitting a curve to the measurement points. The distance models (curves) increasingly differ with decreasing passing distance. For greater distances, the curves tend to zero, which means that the impact on the plate due to a passing vehicle is vanishing.

Fig. 2: Differential force coefficient (characterizing the force jump between the first maximum and first minimum of a detected force curve) depending on passing distance of vehicle with respect to testing plate. Fitting of curves (distance models) to the measurement values for three truck test positions (for configuration C the notation of distance Y symbolizes vertical distance Z’); R² coefficient of determination
back


Characteristic load curve

As explained before, the curves of the dimensionless force coefficient CF(tn) were normalized with the distance models k(Y). Additionally, all runs of a single test position were ensemble averaged (please note again that a 'test position' is defined as a combination of one particular configuration (A, B, or C), one vehicle type, one vertical level Z of the test plate).

                                                   

                                                 

In this way, the aforementioned characteristic load curves could be obtained for each test position, see VIPAS data below. Because the distance model was set up using the bow wave loading peaks (peak P1 and P3), a single force curve behind these peaks can more or less deviate from the characteristic load curve in dependence on the current distance.

back




back


VIPAS data - part 1: flat plate

A 'test position' is defined as a combination of one particular configuration (A, B, or C), one vehicle type and one vertical level Z of the test plate. At each test position, typically, N = 15 to 25 test runs were carried out. For each run, the variable vehicle velocity U and the variable distance Y between plate and vehicle were captured automatically using laser light beam trigger and distance measuring technique.

In the following tables 2-4, the main results of the fullscale experiments are given. Each box of the tables (except the last column) denotes a test position and contains two files. The upper one shows the characteristic load curve of the test position and the lower one shows the unsteady differential pressure distribution (difference between front- and backpressure) at the flat plate induced by the passing vehicle. The last column gives a comparison of the induced force acting on the element for different vehicle types but with the same testing plate configuration, the same testing plate size and the same testing plate height.

Example 1:  Let an examplary test position be defined by the combination of "truck", "configuration A", "plate size Ap" (50 cm x 50 cm) and "plate height Z" (=2,1 m). Then, this leads to a box in table 2 containing the information:
 

   
 

A = (50x50) cm2

vehicle type

comparison

configuration

variable

No. 1
passenger car

No. 2
van

No. 3
truck

No. 4
truck with trailer

No. 5
trailer-truck

No. 6
bus

comp. code

(A)

Z [m]

(position code)

0
1AsmaZ00
avi1AsmaZ00

0
2AsmaZ00
avi2AsmaZ00

0
3AsmaZ00
avi3AsmaZ00

0
4AsmaZ00
avi4AsmaZ00

0
5AsmaZ00
avi5AsmaZ00

0
6AsmaZ00
avi6AsmaZ00

XAsma00

0.5
1AsmaZ05
avi1AsmaZ05

0.5-0.7
2AsmaZ0507
avi2AsmaZ0507

0.7
3AsmaZ07
avi3AsmaZ07

-

-

-

XAsma05

1.0
1AsmaZ10
avi1AsmaZ10

1.0
2AsmaZ10
avi2AsmaZ10

1.4
3AsmaZ14
avi3AsmaZ14

1.4
4AsmaZ14
avi4AsmaZ14

1.8
5AsmaZ18
avi5AsmaZ18

1.5
6AsmaZ15
avi6AsmaZ15

XAsma10

1.5
1AsmaZ15
avi1AsmaZ15

1.4-1.5
2AsmaZ1415
avi2AsmaZ1415

XAsma15

-

2.1
2AsmaZ21
avi2AsmaZ21

2.1
3AsmaZ21
avi3AsmaZ21

-

-

XAsma21

-

2.8
2AsmaZ28
avi2AsmaZ28

2.8
3AsmaZ28
avi3AsmaZ28

3.4
4AsmaZ34
avi4AsmaZ34

3.4
5AsmaZ34
avi5AsmaZ34

3.2
6AsmaZ32
avi6AsmaZ32

XAsma28

(B)

Z [m]

(position code)

0
1BsmaZ00
avi1BsmaZ00

0
2BsmaZ00
avi2BsmaZ00

0
3BsmaZ00
avi3Bsmaz00

0
4BsmaZ00
avi4BsmaZ00

0
5BsmaZ00
avi5BsmaZ00

0
6BsmaZ00
avi6BsmaZ00

XBsma00

0.5
1BsmaZ05
avi1BsmaZ05

0.5-0.7
2BsmaZ0507
avi2BsmaZ0507

0.7
3BsmaZ07
avi3BsmaZ07

-

-

-

XBsma05

1.0
1BsmaZ10
avi1BsmaZ10

1.0
2BsmaZ10
avi2BsmaZ10

1.5-1.7
3BsmaZ1517
avi3BsmaZ1517

1.8
4BsmaZ18
avi4BsmaZ18

1.8
5BsmaZ18
avi5BsamZ18

1.5
6BsmaZ15
avi6BsmaZ15

XBsma10

1.5
1BsmaZ15
avi1BsmaZ15

1.5-1.7
2BsmaZ1517
avi2BsmaZ1517

XBsma15

-

2.1
2BsmaZ21
avi2BsmaZ21

2.1
3BsmaZ21
avi3BsmaZ21

-

XBsma21

-

2.8
2BsmaZ28
avi2BsmaZ28

2.8
3BsmaZ28
avi3BsmaZ28

3.4
4BsmaZ34
avi4BsmaZ34

3.4
5BsmaZ34
avi5BsmaZ34

3.2
6BsmaZ32
avi6BsmaZ32

XBsma28

(C)

Y’ [m]

(position code)

0
1CsmaYmidd
avi1CsmaYmidd

0
2CsmaYmidd
avi2CsmaYmidd

0
3CsmaYmidd
avi3CsmaYmidd

0
4CsmaYmidd
avi4CsmaYmidd

0
5CsmaYmidd
avi5CsmaYmidd

0
6CsmaYmidd
avi6CsmaYmidd

XCsmamidd

» B/2
1CsmaYleft
avi1CsmaYleft

» B/2
2CsmaYleft
avi2CsmaYleft

» B/2
3CsmaYleft
avi3CsmaYleft

-

-

-

XCsmaleft

Note: In the given distance models for configuration C, Y=Z'

Ranges of variables accomplished within measurements

 

 

(A) (B) (C)

U [km/h]

» 40-100

» 40-100

» 40-90

» 50-80

» 50-80

» 50-80

(A) (B)

Y [m]

» 0.3 - 1.9

» 0.2 - 1.6

» 0.3 - 1.5

» 0.4 - 2

» 0.4 - 2

» 0.3 - 2

(C)

Z’ [m]

» 0.2 - 1.1

» 0.15-1.1

» 0.15-1.2

» 0.1 - 1.3

» 0.1 - 1.3

» 0.15-0.8

Table 2: Results of measurement series with the small-sized testing board
back

Ap = (100x100) cm2

vehicle type

comparison

configuration

variable

No. 1
passenger car

No. 2
van

No. 3
truck

No. 4
truck with trailer

No. 5
trailer-truck

No. 6
bus

comp. code

(A)

Z [m]

(position code)

0
1AmedZ00
avi1AmedZ00

0
2AmedZ00
avi2AmedZ00

0
3AmedZ00
avi3AmedZ00

0
4AmedZ00
avi4AmedZ00

0
5AmedZ00
avi5AmedZ00

0
6AmedZ00
avi6AmedZ00

XAmed00

0.7
1AmedZ07
avi1AmedZ07

1.0
2AmedZ10
avi2AmedZ10

1.0
3AmedZ10
avi3AmedZ10

1.5
4AmedZ15
aviaAmedZ15

1.5
5AmedZ15
avi5AmedZ15

1.0
6AmedZ10
avi6AmedZ10

XAmed10

1.4
1AmedZ14
avi1AmedZ14

2.0
2AmedZ20
avi2AmedZ20

2.0
3AmedZ20
avi3AmedZ20

XAmed20

-

3.0
2AmedZ30
avi2AmedZ30

3.0
3AmedZ30
avi3AmedZ30

3.1
4AmedZ31
avi4AmedZ31

3.0
5AmedZ30
avi5AmedZ30

2.9
6AmedZ29
avi6AmedZ29

XAmed30

(B)

Z [m]

(position code)

0
1BmedZ00
avi1BmedZ00

0
2BmedZ00
avi2BmedZ00

0
3BmedZ00
avi3BmedZ00

0
4BmedZ00
avi4BmedZ00

0
5BmedZ00
avi5BmedZ00

0
6BmedZ00
avi6BmedZ00

XBmed00

0.7
1BmedZ07
avi1BmedZ07

1.0
2BmedZ10
avi2BmedZ10

1.0
3BmedZ10
avi3BmedZ10

1.5
4BmedZ15
avi4BmedZ15

1.5
5BmedZ15
avi5BmedZ15

1.0
6BmedZ10
avi6BmedZ10

XBmed10

1.4
1BmedZ14
avi1BmedZ14

2.0
2BmedZ20
avi2BmedZ20

2.0
3BmedZ20
avi3BmedZ20

XBmed20

-

3.0
2BmedZ30
avi2BmedZ30

3.0
3BmedZ30
avi3BmedZ30

3.0
4BmedZ30
avi4BmedZ30

3.0
5BmedZ30
avi5BmedZ30

2.9
6BmedZ29
avi6BmedZ29

XBmed30

(C)

Y’ [m]

(position code)

0
1CmedYmidd
avi1CmedYmidd

0
2CmedYmidd
avi2CmedYmidd

0
3CmedYmidd
avi3CmedYmidd

0
4CmedYmidd
avi4CmedYmidd

0
5CmedYmidd
avi5CmedYmidd

0
6CmedYmidd
avi6CmedYmidd

XCmedmidd

» B/2
1CmedYleft
avi1CmedYleft

» B/2
2CmedYleft
avi2CmedYleft

» B/2
3CmedYleft
avi3CmedYleft

-

-

-

XCmedleft

Note: In the given distance models for configuration C, Y=Z'

Ranges of variables accomplished within measurements

 

(A) (B) (C)

U [km/h]

» 50-100

» 50-100

» 40-90

» 40-80

» 40-80

» 50-90

(A) (B)

Y [m]

» 0.3 - 2

» 0.3 - 1.6

» 0.2 - 1.6

» 0.4 - 2

» 0.4 - 2

» 0.3 - 2

(C)

Z’ [m]

» 0.2-1.05

» 0.15-1.1

» 0.15-1.2

» 0.1 - 1.1

» 0.1 - 1.1

» 0.15 - 1

Table 3: Results of measurement series with the medium-sized testing board
back

Ap = (150x150) cm2

vehicle type

comparison

configuration

variable

No. 1
passenger car

No. 2
van

No. 3
truck

No. 4
truck with trailer

No. 5
trailer-truck

No. 6
bus

comp. code

(A)

Z [m]

(position code)

0
1AbigZ00
avi1AbigZ00

0
2AbigZ00
avi2AbigZ00

0
3AbigZ00
avi3AbigZ00

0
4AbigZ00
avi4AbigZ00

0
5AbigZ00
avi5AbigZ00

0
6AbigZ00
avi6AbigZ00

XAbig00

1.0
1AbigZ10
avi1AbigZ10

1.0
2AbigZ10
avi2AbigZ10

1.0
3AbigZ10
avi3AbigZ10

1.0
4AbigZ10
avi4AbigZ10

1.0
5AbigZ10
avi5AbigZ10

1.0
6AbigZ10
avi6AbigZ10

XAbig10

-

-

2.8
3AbigZ28
avi3AbigZ28

2.5
4AbigZ25
avi4AbigZ25

2.5
5AbigZ25

avi5AbigZ25

2.5
6AbigZ25
avi6AbigZ25

XAbig25

(B)

Z [m]

(position code)

0
1BbigZ00
avi1BbigZ00

0
2BbigZ00
avi2BbigZ00

0
3BbigZ00
avi3BbigZ00

0
4BbigZ00
avi4BbigZ00

0
5BbigZ00
avi5BbigZ00

0
6BbigZ00
avi6BbigZ00

XBbig00

1.0
1BbigZ10
avi1BbigZ10

1.0
2BbigZ10
avi2BbigZ10

1.0
3BbigZ10
avi3BbigZ10

1.0
4BbigZ10
avi4BbigZ10

1.0
5BbigZ10
avi5BbigZ10

1.0
6BbigZ10
avi6BbigZ10

XBbig10

-

-

2.5
3BbigZ25
avi3BbigZ25

2.5
4BbigZ25
avi4BbigZ25

2.5
5BbigZ25
avi5BbigZ25

2.5
6BbigZ25
avi6BbigZ25

XBbig25

(C)

Y’ [m]

(position code)

0
1CbigYmidd
avi1CbigYmidd

0
2CbigYmidd
avi2CbigYmidd

0
3CbigYmidd
avi3CbigYmidd

0
4CbigYmidd
avi4CbigYmidd

0
5CbigYmidd
avi5CbigYmidd

0
6CbigYmidd
avi6CbigYmidd

XCbigmidd

Note: In the given distance models for configuration C, Y=Z'

Ranges of variables accomplished within measurements

 

(A) (B) (C)

U [km/h]

» 50-100

» 50-100

» 40-90

» 40-80

» 40-80

» 40-80

(A) (B)

Y [m]

» 0.3 - 2.5

» 0.3 - 2.5

» 0.4 - 2.1

» 0.4 - 2

» 0.4 - 2

» 0.3 - 2

(C)

Z’ [m]

» 0.1 - 1

» 0.2-1.15

» 0.1 - 0.9

» 0.15-1.1

» 0.15-1.1

» 0.15-0.6

Table 4: Results of measurement series with the large-sized testing board
back


How to use data base VIPAS - part 1: flat plate

Supposed, the passing distance Y, the vehicle velocity U and the vehicle type with frontal area Av are known, the data base VIPAS can be used to compute the wind load F(t) or F(X) acting on a flat element of size 50 cm x 50 cm, 100 cm x 100 cm or 150 cm x 150 cm  in height Z with configuration A, B or C. This computation can be performed on the basis of the experimentally determined characteristic load curves <CF*> in combination with the distance models k(Y) derived from full scale measurements:

                                                                                            

Substituting tn with Eq. (2) delivers the resultant force F(t) or F(X).

Example 2:  Which is the maximum force acting on a plate element of size 100 cm x 100 cm (medium-sized plate) with configuration A and a plate height of Z=3,0 m induced by a trailer-truck (No. 5) with velocity U=90 km/h and a passing distance of Y=0,4 m ?
Thus, the corresponding file code is "5AmedZ30", which can be found in Table 3 and delivers the following characteristic load curve:

From this characteristic load curve (black), one can infer that the maximum normalized force coefficient reaches a positive value of about 0.75 and the corresponding distance model is given in the lower left corner. The frontal area of the trailer-truck can be inferred from Table 1. Thus, for this particular test position the computation is as follows:

Inserting these values into equation (5) delivers

As a result, a maximum pressure force (away from the vehicle) of about 76 N is acting on the testing plate of size 100 cm x 100 cm.

back


Copyright/Uhrheberrecht

BRITAIN.JPG (9340 Byte) Data and images contained within this database are subject to copyright and are published for non-commercial use only. The user is not entitled to use the data commercially or publish the database or any part therof.
GERMANYC.JPG (2763 Byte) Die Daten und Inhalte der Datenbasis VIPAS sind urheberrechtlich geschützt. Die Veröffentlichung in Form dieser Website dient ausschließlich der persönlichen Information. Eine kommerzielle Verwendung/Verwertung der in der Datenbasis enthaltenen Informationen ist nicht zulässig. Ebenso nicht zulässig ist eine Veröffentlichung oder Vervielfältigung der auf dieser Website gespeicherten Informationen durch Besucher/Nutzer.

Disclaimer/Haftungsausschluss

BRITAIN.JPG (9340 Byte) The data, text, graphics and links contained in these pages are provided for information purposes only. The authors provide no warranty, expressed or implied, as to the accuracy, reliability, or completeness of the data, text, links, and other items contained on these pages and exclude any responsibility for loss which may arise from reliance on data contained in this database. The authors may make changes to the data contained in these pages at any time without notice. The authors reserve the right to modify or withdraw, temporarily or permanently, the database (or any part thereof) without notice.
GERMANYC.JPG (2763 Byte) Die Inhalte dieser Datenbasis wurden mit größtmöglicher Sorgfalt erstellt. Die Autoren übernehmen jedoch keine Gewähr für die Richtigkeit und Vollständigkeit der bereitgestellten Inhalte. Die Nutzung der Inhalte der Datenbasis erfolgt auf eigene Gefahr des Nutzers. Ebenso wird keinerlei Haftung übernommen für jeglichen mittelbaren oder unmittelbaren Schaden welcher Art auch immer, der sich aus der Nutzung der Datenbank ergeben sollte. Die Autoren behalten sich vor, die Datenbank jederzeit und ohne Vorankündigung zu modifizieren oder teilweise oder gänzlich zurückzuziehen und abzuschalten.

back


Publications


Lichtneger, P., Ruck, B., 2013
: "
Transient wind loads on flat elements induced by passing vehicles", Proc. 21. Fachtagung „Lasermethoden in der Strömungsmesstechnik”, Universität der Bundeswehr München, ISBN 978-3-9805613-9-6, ISSN 2194-2447 (paper download)

Lichtneger, P., Ruck, B., 2015: "Full scale experiments on vehicle induced transient loads on roadside plates", Journal of Wind Engineering & Industrial Aerodynamics, 136, 73-81

Lichtneger, P., Ruck, B., 2014: "Transient wind loads on roadside-mounted and overhanging flat elements induced by passing vehicles", First international conference in numerical and experimental aerodynamics of road vehicles and trains (Aerovehicles 1), Bordeaux, France, June 23-25, 2014

Ruck, B., Lichtneger, P., 2014:  VIPAS database - Vehicle Induced Pressure and Suction forces on flat roadside elements, Karlsruhe Institute of Technology (KIT), Laboratory of Building- and Environmental Aerodynmaics, publically accessible under:
http://www.ifh.uni-karlsruhe.de/science/aerodyn/vipas1.htm

back

Zugriffszähler

 

 

  Website under construction !
   
   
   
   
 
   
   
 
     

zurück